strange values ​​extracted with grads

All other topics about postprocessing model data (GrADS and other software), about other numerical weather prediction software (including WRF-NMM and WRF-ARW discussion unrelated to UEMS/WRF EMS), and general meteorology talk go in this forum.
dominic
Posts: 336
Joined: Thu Jun 14, 2012 7:19 am

Re: strange values ​​extracted with grads

Post by dominic » Thu Jan 02, 2014 12:54 pm

this is output of script Cory

Code: Select all

746:7423979,vt=2014010207,PREC,lon=14.246595,lat=40.818645,val=0
757:7473825,vt=2014010207,PREC,lon=14.246595,lat=40.818645,val=0
1195:12243375,vt=2014010208,PREC,lon=14.246595,lat=40.818645,val=0
1206:12296522,vt=2014010208,PREC,lon=14.246595,lat=40.818645,val=0
1644:17093946,vt=2014010209,PREC,lon=14.246595,lat=40.818645,val=0
1655:17150614,vt=2014010209,PREC,lon=14.246595,lat=40.818645,val=0
2093:21992494,vt=2014010210,PREC,lon=14.246595,lat=40.818645,val=0
2104:22048627,vt=2014010210,PREC,lon=14.246595,lat=40.818645,val=0
2542:26937554,vt=2014010211,PREC,lon=14.246595,lat=40.818645,val=0.00015748
2553:26996115,vt=2014010211,PREC,lon=14.246595,lat=40.818645,val=0.00015748
2991:31901740,vt=2014010212,PREC,lon=14.246595,lat=40.818645,val=0.000551181
3002:31963967,vt=2014010212,PREC,lon=14.246595,lat=40.818645,val=0.000377953
3440:36920028,vt=2014010213,PREC,lon=14.246595,lat=40.818645,val=0.00129921
3451:36985321,vt=2014010213,PREC,lon=14.246595,lat=40.818645,val=0.000740158
3889:42007609,vt=2014010214,PREC,lon=14.246595,lat=40.818645,val=0.00244095
3900:42074661,vt=2014010214,PREC,lon=14.246595,lat=40.818645,val=0.00117717
4338:47106235,vt=2014010215,PREC,lon=14.246595,lat=40.818645,val=0.00433071
4349:47175868,vt=2014010215,PREC,lon=14.246595,lat=40.818645,val=0.00185827
4787:52201022,vt=2014010216,PREC,lon=14.246595,lat=40.818645,val=0.00720473
4798:52272332,vt=2014010216,PREC,lon=14.246595,lat=40.818645,val=0.0028937
5236:57320867,vt=2014010217,PREC,lon=14.246595,lat=40.818645,val=0.015748
5247:57393592,vt=2014010217,PREC,lon=14.246595,lat=40.818645,val=0.00855119
5685:62415160,vt=2014010218,PREC,lon=14.246595,lat=40.818645,val=0.0270079
5696:62489056,vt=2014010218,PREC,lon=14.246595,lat=40.818645,val=0.0112488
6134:67484540,vt=2014010219,PREC,lon=14.246595,lat=40.818645,val=0.0379528
6145:67559361,vt=2014010219,PREC,lon=14.246595,lat=40.818645,val=0.010952
6583:72546091,vt=2014010220,PREC,lon=14.246595,lat=40.818645,val=0.047126
6594:72621897,vt=2014010220,PREC,lon=14.246595,lat=40.818645,val=0.00917559
7032:77592328,vt=2014010221,PREC,lon=14.246595,lat=40.818645,val=0.0557874
7043:77668940,vt=2014010221,PREC,lon=14.246595,lat=40.818645,val=0.00864725
7481:82638658,vt=2014010222,PREC,lon=14.246595,lat=40.818645,val=0.0661811
7492:82716433,vt=2014010222,PREC,lon=14.246595,lat=40.818645,val=0.0104173
7930:87668678,vt=2014010223,PREC,lon=14.246595,lat=40.818645,val=0.0780709
7941:87747739,vt=2014010223,PREC,lon=14.246595,lat=40.818645,val=0.0118858
8379:92669199,vt=2014010300,PREC,lon=14.246595,lat=40.818645,val=0.0889764
8390:92749487,vt=2014010300,PREC,lon=14.246595,lat=40.818645,val=0.0108819
8828:97624462,vt=2014010301,PREC,lon=14.246595,lat=40.818645,val=0.0980316
8839:97705541,vt=2014010301,PREC,lon=14.246595,lat=40.818645,val=0.00907087
9277:102600899,vt=2014010302,PREC,lon=14.246595,lat=40.818645,val=0.105276
9288:102682797,vt=2014010302,PREC,lon=14.246595,lat=40.818645,val=0.00724804
9726:107557238,vt=2014010303,PREC,lon=14.246595,lat=40.818645,val=0.111221
9737:107639670,vt=2014010303,PREC,lon=14.246595,lat=40.818645,val=0.00594095
10175:112479020,vt=2014010304,PREC,lon=14.246595,lat=40.818645,val=0.116654
10186:112561806,vt=2014010304,PREC,lon=14.246595,lat=40.818645,val=0.0054567
10624:117399400,vt=2014010305,PREC,lon=14.246595,lat=40.818645,val=0.123819
10635:117482472,vt=2014010305,PREC,lon=14.246595,lat=40.818645,val=0.00711811
11073:122291357,vt=2014010306,PREC,lon=14.246595,lat=40.818645,val=0.133189
11084:122374831,vt=2014010306,PREC,lon=14.246595,lat=40.818645,val=0.00940552

we did not own :/

Antonix
Posts: 260
Joined: Fri Oct 16, 2009 8:53 am

Re: strange values ​​extracted with grads

Post by Antonix » Thu Jan 02, 2014 1:03 pm

attach the file .ctl

dominic
Posts: 336
Joined: Thu Jun 14, 2012 7:19 am

Re: strange values ​​extracted with grads

Post by dominic » Thu Jan 02, 2014 1:10 pm

Code: Select all

dset ^201401020600_nmm_wrfout_d01.grb2
index ^201401020600_nmm_wrfout_d01.idx
undef 9.999E+20
title 201401020600_nmm_wrfout_d01.grb2
* produced by g2ctl v0.0.8.8
* command line options: -verf -ts1hr 201401020600_nmm_wrfout_d01.grb2 201401020600_nmm_wrfout_d01.idx
* griddef=1:0:(104 x 131):grid_template=30:winds(grid): Lambert Conformal: (104 x 131) input WE:SN output WE:SN res 8 Lat1 34.567000 Lon1 6.341000 LoV 12.692000 LatD 41.694000 Latin1 41.694000 Latin2 41.694000 LatSP 0.000000 LonSP 0.000000 North Pole
dtype grib2
pdef 104 131 lccr 34.567000 6.341000 1 1 41.694000 41.694000 12.692000 11552.000000 11873.000000
xdef 126 linear 4.812698 0.127532318124058
ydef 111 linear 34.554257 0.127532318124058
tdef 25 linear 06Z02jan2014 1hr
* PROFILE hPa
zdef 38 levels 101300 100000 97500 95000 92500 90000 87500 85000 82500 80000 77500 75000 72500 70000 67500 65000 62500 60000 57500 55000 52500 50000 47500 45000 42500 40000 37500 35000 32500 30000 27500 25000 22500 20000 15000 10000 5000 2500
options pascals
vars 149
no4LFTX180_0mb  0,108,18000,0   0,7,11 ** 180-0 mb above ground Best (4 Layer) Lifted Index [K]
ACPCPaccsfc  0,1,0   0,1,10,1 ** surface Convective Precipitation [kg m-2]
ACPCPsfc  0,1,0   0,1,10 ** surface Convective Precipitation [kg m-2]
AGRPLaccsfc  0,1,0   0,1,153,1 ** surface Accumulated Graupel [kg/m^2]
AGRPLsfc  0,1,0   0,1,153 ** surface Accumulated Graupel [kg/m^2]
AHAILaccsfc  0,1,0   0,1,154,1 ** surface Accumulated Hail [kg/m^2]
AHAILsfc  0,1,0   0,1,154 ** surface Accumulated Hail [kg/m^2]
APCPaccsfc  0,1,0   0,1,8,1 ** surface Total Precipitation [kg m-2]
APCPsfc  0,1,0   0,1,8 ** surface Total Precipitation [kg m-2]
ARAINaccsfc  0,1,0   0,1,167,1 ** surface Accumulated Rainfall [kg/m^2]
ARAINsfc  0,1,0   0,1,167 ** surface Accumulated Rainfall [kg/m^2]
ASICEaccsfc  0,1,0   0,1,152,1 ** surface Accumulated Snow And Ice [kg/m^2]
ASICEsfc  0,1,0   0,1,152 ** surface Accumulated Snow And Ice [kg/m^2]
ASNOWaccsfc  0,1,0   0,1,169,1 ** surface Accumulated Snow & Graupel [kg/m^2]
ASNOWsfc  0,1,0   0,1,169 ** surface Accumulated Snow & Graupel [kg/m^2]
AZRAINaccsfc  0,1,0   0,1,168,1 ** surface Accumulated Freezing Rainfall [kg/m^2]
AZRAINsfc  0,1,0   0,1,168 ** surface Accumulated Freezing Rainfall [kg/m^2]
BRTMPtoa   0,8,0   0,4,4 ** top of atmosphere Brightness Temperature [K]
BTMPTOAtoa   0,8,0   0,4,151 ** top of atmosphere Brightness Temperature TOA [K]
CAPEsfc   0,1,0   0,7,6 ** surface Convective Available Potential Energy [J/kg]
CFRZRsfc   0,1,0   0,1,34 ** surface Categorical Freezing Rain [1|0]
CICEPsfc   0,1,0   0,1,35 ** surface Categorical Ice Pellets [1|0]
CINsfc   0,1,0   0,7,7 ** surface Convective Inhibition [J/kg]
CRAINsfc   0,1,0   0,1,33 ** surface Categorical Rain [1|0]
CSNOWsfc   0,1,0   0,1,36 ** surface Categorical Snow [1|0]
CURATEsfc   0,1,0   0,1,37 ** surface Convective Precipitation Rate [kg m-2 s-1]
CURMAXsfc   0,1,0   0,1,156,2 ** surface Maximum Convective Precipitation Rate [kg/m^2/s]
DPT2m   0,103,2   0,0,6 ** 2 m above ground Dew Point Temperature [K]
DVVMAXl100_100  0,100,100000,40000   0,2,221,2 ** 1000-400 mb Hourly Maximum Of Downward Vertical Velocity In The Lowest 400hPa [m/s]
ECHOTOPclm   0,200,0   0,16,3 ** entire atmosphere (considered as a single layer) Reflectivity Echo Top [m]
ELONsfc   0,1,0   0,191,193 ** surface East Longitude (0 - 360) [deg]
FLGHTsfc   0,1,0   0,19,205 ** surface Flight Category [Non-Dimensional]
G10MAX10m   0,103,10   0,2,155,2 ** 10 m above ground Maximum 10m Wind Gust [m/s]
GRATEsfc   0,1,0   0,1,170 ** surface Graupel Precipitation Rate [kg m-2 s-1]
GRMAXsfc   0,1,0   0,1,174,2 ** surface Period Maximum Graupel Precipitation Rate [kg/m^2/s]
GUST10m   0,103,10   0,2,22 ** 10 m above ground Wind Speed (Gust) [m/s]
HCDChcll   0,234,0   0,6,5 ** high cloud layer High Cloud Cover [%]
HGTsfc   0,1,0   0,3,5 ** surface Geopotential Height [gpm]
HGTprs    38,100  0,3,5 ** (1013 1000 975 950 925.. 200 150 100 50 25) Geopotential Height [gpm]
HGTclb   0,2,0   0,3,5 ** cloud base Geopotential Height [gpm]
HGTpbl   0,220,0   0,3,5 ** planetary boundary layer Geopotential Height [gpm]
HGTlwb0   0,245,0   0,3,5 ** lowest level of the wet bulb zero Geopotential Height [gpm]
HGTeql   0,247,0   0,3,5 ** equilibrium level Geopotential Height [gpm]
HGTclt   0,3,0   0,3,5 ** cloud top Geopotential Height [gpm]
HGT0C   0,4,0   0,3,5 ** 0C isotherm Geopotential Height [gpm]
HGTl5   0,5,0   0,3,5 ** level of adiabatic condensation from sfc Geopotential Height [gpm]
HINDEXsfc   0,1,0   2,4,2 ** surface Haines Index [-]
HLCY3000_0m  0,103,3000,0   0,7,8 ** 3000-0 m above ground Storm Relative Helicity [m2 s-2]
HPBLsfc   0,1,0   0,3,18 ** surface Planetary Boundary Layer Height [m]
HRATEsfc   0,1,0   0,1,171 ** surface Hail Precipitation Rate [kg m-2 s-1]
HRMAXsfc   0,1,0   0,1,175,2 ** surface Period Maximum Hail Precipitation Rate [kg/m^2/s]
IMGDaccsfc  0,1,0   255,255,255,1 ** surface Image Data [-]
IMGDsfc  0,1,0   255,255,255 ** surface Image Data [-]
IMGDperiodsfc  0,1,0   255,255,255,2 ** surface Image Data [-]
IRATEsfc   0,1,0   0,1,166 ** surface Snow & Ice Precipitation Rate (Water Equivalent) [kg/m^2/s]
IRMAXsfc   0,1,0   0,1,158,2 ** surface Maximum Snow & Ice Precipitation Rate (Water Equivalent) [kg/m^2/s]
LANDsfc   0,1,0   2,0,0 ** surface Land Cover (1=land [0=sea)]
LCDClcll   0,214,0   0,6,3 ** low cloud layer Low Cloud Cover [%]
LFTXl100_100  0,100,50000,100000   0,7,10 ** 500-1000 mb Surface Lifted Index [K]
MCDCmcll   0,224,0   0,6,4 ** middle cloud layer Medium Cloud Cover [%]
NCPCPaccsfc  0,1,0   0,1,9,1 ** surface Large-Scale Precipitation (non-convective) [kg m-2]
NCPCPsfc  0,1,0   0,1,9 ** surface Large-Scale Precipitation (non-convective) [kg m-2]
NCRATEsfc   0,1,0   0,1,164 ** surface Non-Convective Precipitation Rate [kg m-2 s-1]
NCRMAXsfc   0,1,0   0,1,157,2 ** surface Maximum Non-Convective Precipitation Rate [kg/m^2/s]
NLATsfc   0,1,0   0,191,192 ** surface Latitude (-90 To +90) [deg]
PLI30_0mb  0,108,3000,0   0,7,0 ** 30-0 mb above ground Parcel Lifted Index (to 500 Mb) [K]
PLPL255_0mb  0,108,25500,0   0,3,200 ** 255-0 mb above ground Pressure Of Level From Which Parcel Was Lifted [Pa]
PRESsfc   0,1,0   0,3,0 ** surface Pressure [Pa]
PRES2m   0,103,2   0,3,0 ** 2 m above ground Pressure [Pa]
PRESclb   0,2,0   0,3,0 ** cloud base Pressure [Pa]
PRESclt   0,3,0   0,3,0 ** cloud top Pressure [Pa]
PRESl5   0,5,0   0,3,0 ** level of adiabatic condensation from sfc Pressure [Pa]
PRMSLmsl   0,101,0   0,3,1 ** mean sea level Pressure Reduced To MSL [Pa]
PWATclm   0,200,0   0,1,3 ** entire atmosphere (considered as a single layer) Precipitable Water [kg m-2]
PWATMAXclm   0,200,0   0,1,162,2 ** entire atmosphere (considered as a single layer) Maximum Precipitable Water [kg/m^2]
REFCclm   0,200,0   0,16,5 ** entire atmosphere (considered as a single layer) Composite Reflectivity [dB]
REFCMAXclm   0,200,0   0,16,198,2 ** entire atmosphere (considered as a single layer) Maximum Of Simulated Reflectivity (AGL) [dB]
REFDprs    38,100  0,16,4 ** (1013 1000 975 950 925.. 200 150 100 50 25) Reflectivity [dB]
REFD1000m   0,103,1000   0,16,4 ** 1000 m above ground Reflectivity [dB]
REFD2000m   0,103,2000   0,16,4 ** 2000 m above ground Reflectivity [dB]
REFD3000m   0,103,3000   0,16,4 ** 3000 m above ground Reflectivity [dB]
REFD4000m   0,103,4000   0,16,4 ** 4000 m above ground Reflectivity [dB]
REFD5000m   0,103,5000   0,16,4 ** 5000 m above ground Reflectivity [dB]
REFDMAX1000m   0,103,1000   0,16,152,2 ** 1000 m above ground Maximum Reflectivity [dbZ]
REFDMAX2000m   0,103,2000   0,16,152,2 ** 2000 m above ground Maximum Reflectivity [dbZ]
REFDMAX3000m   0,103,3000   0,16,152,2 ** 3000 m above ground Maximum Reflectivity [dbZ]
REFDMAX4000m   0,103,4000   0,16,152,2 ** 4000 m above ground Maximum Reflectivity [dbZ]
REFDMAX5000m   0,103,5000   0,16,152,2 ** 5000 m above ground Maximum Reflectivity [dbZ]
RHprs    38,100  0,1,1 ** (1013 1000 975 950 925.. 200 150 100 50 25) Relative Humidity [%]
RH2m   0,103,2   0,1,1 ** 2 m above ground Relative Humidity [%]
RHclm   0,200,0   0,1,1 ** entire atmosphere (considered as a single layer) Relative Humidity [%]
RH0C   0,4,0   0,1,1 ** 0C isotherm Relative Humidity [%]
RH2MEAN2m   0,103,2   0,1,151,0 ** 2 m above ground Mean 2m Relative Humidity [%]
RHMAX2m   0,103,2   0,1,27,2 ** 2 m above ground Maximum Relative Humidity [%]
RHMIN2m   0,103,2   0,1,198,2 ** 2 m above ground Minimum Relative Humidity [%]
RRATEsfc   0,1,0   0,1,65 ** surface Rain Precipitation Rate [kg m-2 s-1]
RRMAXsfc   0,1,0   0,1,172,2 ** surface Period Maximum Rainfall Rate [kg/m^2/s]
S10MAX10m   0,103,10   0,2,156,2 ** 10 m above ground Magnitude Of Maximum 10m Wind [m/s]
S10MEAN10m   0,103,10   0,2,151,0 ** 10 m above ground Magnitude Of Mean 10m Wind [m/s]
SNODsfc   0,1,0   0,1,11 ** surface Snow Depth [m]
SNOWCsfc   0,1,0   0,1,42 ** surface Snow Cover [%]
SOILW0_10cm  0,106,0,0.1   2,0,9 ** 0-0.1 m below ground Volumetric Soil Moisture Content [Proportion]
SOILW10_40cm  0,106,0.1,0.4   2,0,9 ** 0.1-0.4 m below ground Volumetric Soil Moisture Content [Proportion]
SOILW40_100cm  0,106,0.4,1   2,0,9 ** 0.4-1 m below ground Volumetric Soil Moisture Content [Proportion]
SOILW100_200cm  0,106,1,2   2,0,9 ** 1-2 m below ground Volumetric Soil Moisture Content [Proportion]
SRATEsfc   0,1,0   0,1,165 ** surface Snowfall Rate (Water Equivalent) [kg/m^2/s]
SRMAXsfc   0,1,0   0,1,159,2 ** surface Maximum Snowfall Rate (Water Equivalent) [kg/m^2/s]
T2MEAN2m   0,103,2   0,0,151,0 ** 2 m above ground Mean 2m Temperature [K]
TCDCprs    38,100  0,6,1 ** (1013 1000 975 950 925.. 200 150 100 50 25) Total Cloud Cover [%]
TCDCclm   0,200,0   0,6,1 ** entire atmosphere (considered as a single layer) Total Cloud Cover [%]
TCOLGMXclm   0,200,0   0,1,160,2 ** entire atmosphere (considered as a single layer) Maximum Total Column Graupel [kg/m^2]
TCOLHMXclm   0,200,0   0,1,161,2 ** entire atmosphere (considered as a single layer) Maximum Total Column Hail [kg/m^2]
TMAX2m   0,103,2   0,0,4,2 ** 2 m above ground Maximum Temperature [K]
TMIN2m   0,103,2   0,0,5,2 ** 2 m above ground Minimum Temperature [K]
TMPsfc   0,1,0   0,0,0 ** surface Temperature [K]
TMPprs    38,100  0,0,0 ** (1013 1000 975 950 925.. 200 150 100 50 25) Temperature [K]
TMP2m   0,103,2   0,0,0 ** 2 m above ground Temperature [K]
TPRATEsfc   0,1,0   0,1,7 ** surface Total Precipitation Rate [kg m-2 s-1]
TPRMAXsfc   0,1,0   0,1,155,2 ** surface Maximum Total Precipitation Rate [kg/m^2/s]
TSD1Dsfc   0,1,0   0,0,200 ** surface Standard Dev. Of IR Temp. Over 1x1 Deg. Area [K]
TSOIL0_10cm  0,106,0,0.1   2,0,2 ** 0-0.1 m below ground Soil Temperature [K]
TSOIL10_40cm  0,106,0.1,0.4   2,0,2 ** 0.1-0.4 m below ground Soil Temperature [K]
TSOIL40_100cm  0,106,0.4,1   2,0,2 ** 0.4-1 m below ground Soil Temperature [K]
TSOIL100_200cm  0,106,1,2   2,0,2 ** 1-2 m below ground Soil Temperature [K]
U10MAX10m   0,103,10   0,2,157,2 ** 10 m above ground U-Component Of Maximum 10m Wind [m/s]
U10MEAN10m   0,103,10   0,2,152,0 ** 10 m above ground U-Component Of Mean 10m Wind [m/s]
UGRDprs    38,100  0,2,2 ** (1013 1000 975 950 925.. 200 150 100 50 25) U-Component Of Wind [m/s]
UGRD10m   0,103,10   0,2,2 ** 10 m above ground U-Component Of Wind [m/s]
UPHL5000_2000m  0,103,5000,2000   0,7,15 ** 5000-2000 m above ground Updraft Helicity [m2 s-2]
UPHLMAX5000_2000m  0,103,5000,2000   0,7,199,2 ** 5000-2000 m above ground Maximum Of Updraft Helicity - 2km To 5 Km AGL [m2/s2]
UVVMAXl100_100  0,100,100000,40000   0,2,220,2 ** 1000-400 mb Hourly Maximum Of Upward Vertical Velocity In The Lowest 400hPa [m/s]
V10MAX10m   0,103,10   0,2,158,2 ** 10 m above ground V-Component Of Maximum 10m Wind [m/s]
V10MEAN10m   0,103,10   0,2,153,0 ** 10 m above ground V-Component Of Mean 10m Wind [m/s]
VGRDprs    38,100  0,2,3 ** (1013 1000 975 950 925.. 200 150 100 50 25) V-Component Of Wind [m/s]
VGRD10m   0,103,10   0,2,3 ** 10 m above ground V-Component Of Wind [m/s]
VISsfc   0,1,0   0,19,0 ** surface Visibility [m]
VRATEpbl   0,220,0   0,2,224 ** planetary boundary layer Ventilation Rate [m2/s]
VUCSH1000_0m  0,103,1000,0   0,2,15 ** 1000-0 m above ground Vertical U-Component Of Shear [s-1]
VUCSH6000_0m  0,103,6000,0   0,2,15 ** 6000-0 m above ground Vertical U-Component Of Shear [s-1]
VVCSH1000_0m  0,103,1000,0   0,2,16 ** 1000-0 m above ground Vertical V-Component Of Shear [s-1]
VVCSH6000_0m  0,103,6000,0   0,2,16 ** 6000-0 m above ground Vertical V-Component Of Shear [s-1]
VVELprs    38,100  0,2,8 ** (1013 1000 975 950 925.. 200 150 100 50 25) Vertical Velocity (Pressure) [Pa/s]
VVMEANl100_100  0,100,100000,40000   0,2,159,0 ** 1000-400 mb Mean Vertical Velocity From 1000 To 400mb [m/s]
VWSH610m   0,103,610   0,2,25 ** 610 m above ground Vertical Speed Sheer [s-1]
WEASDaccsfc  0,1,0   0,1,13,1 ** surface Water Equivalent Of Accumulated Snow Depth [kg m-2]
WEASDsfc  0,1,0   0,1,13 ** surface Water Equivalent Of Accumulated Snow Depth [kg m-2]
WTMPsfc   0,1,0   10,3,0 ** surface Water Temperature [K]
ZRATEsfc   0,1,0   0,1,67 ** surface Freezing Rain Precipitation Rate [kg m-2 s-1]
ZRMAXsfc   0,1,0   0,1,173,2 ** surface Period Maximum Freezing Rainfall Rate [kg/m^2/s]
ENDVARS
Last edited by dominic on Fri Jan 03, 2014 9:43 am, edited 1 time in total.

dominic
Posts: 336
Joined: Thu Jun 14, 2012 7:19 am

Re: strange values ​​extracted with grads

Post by dominic » Fri Jan 03, 2014 7:42 am

Is there anyone who wants to share a script alternative data mining?

dominic
Posts: 336
Joined: Thu Jun 14, 2012 7:19 am

Re: strange values ​​extracted with grads

Post by dominic » Fri Jan 03, 2014 9:42 am

I arose a doubt, is not that you have to multiply the variable for a number? because if I try to do a multiplication I get a correct value.

I think it is a problem of wrf-ems and not the script .....

dominic
Posts: 336
Joined: Thu Jun 14, 2012 7:19 am

Re: strange values ​​extracted with grads

Post by dominic » Fri Jan 03, 2014 4:51 pm

Ivan and Antonix, you were right, it was the variable that was wrong, the script works. Only that I use the variable of convective precipitation, instead I have to use that of the total precipitation.

Problem solved then :)


PS: for the snow what do you recommend to use?

Snow + Ice or Snow + Groupel?

In wrf-ems 3.1 it seems to me that there was only the parameter of total snow fall.

what do you think?
Last edited by dominic on Fri Jan 03, 2014 5:17 pm, edited 1 time in total.

meteoadriatic
Posts: 1587
Joined: Wed Aug 19, 2009 10:05 am

Re: strange values ​​extracted with grads

Post by meteoadriatic » Fri Jan 03, 2014 5:12 pm

Great!

It depends what you want to do and then choose how to approach to snow.

You can go with variable for total amount of precipitation and multiply it with csnowsfc on every hour but this is bad. There is also variable weasdsfc that should be amount of snow precipitated but my is always empty. Gippox put his plot with that variable containing snow, so this could be what you want. If you have empty that variable try to see with Gippox why he has data, I have 0 in it :) There is also snodsfc that gives you height of snow on the ground so you can find how much snow heights change with time (eg. snodsfc-snodsfc(t-1) will give you hourly change of snow height on the ground.

Cory
Posts: 10
Joined: Fri Sep 06, 2013 10:43 pm

Re: strange values ​​extracted with grads

Post by Cory » Wed Jan 22, 2014 2:51 pm

I also have a new sed section for the WGRIB2 scripts I posted. This one avoids having to hand enter the lat/lon to be removed during cleanup:

Code: Select all

sed -i 's/[^,]*,//' file.txt
sed -i 's/lon=[0-9]*\.[0-9]*//g' file.txt
sed -i 's/lat=[0-9]*\.[0-9]*//g' file.txt
sed -i 's/val=//g' file.txt
sed -i 's/vt=//g' file.txt
sed -i 's/\,,//g' file.txt

wrf_model
Posts: 55
Joined: Wed Feb 17, 2010 9:38 pm

Re: strange values ​​extracted with grads

Post by wrf_model » Sun Mar 16, 2014 4:33 pm

dominic wrote:hello ivan


I extract the data for grads use scripts created by users of this forum.

This: viewtopic.php?f=11&t=611

Code: Select all

    * open WRF output, change according to your set-up
    'open /WRFV3/wrfems/lastrun/wrf.ctl'

    * initialize variables, this creates a new time series file
    * with the first line containing a header
    outfile = 'wrf_timeseries.txt'
    code=write(''outfile,'sourcerundt;locationid;tau;t2m;dpt2m;rh2m;u10m;v10m;mslp;t850;rh850;t700;hgt700;hgt1000;dswrf;apcp;tcdc;vissfc;gustsfc')

    * append a time series to a file, one line for each location
    rc=savedata(52.15,4.42,1)

    'quit'

    * Savedata: function to save data for a specific location (lat lon)
    * locationid is a custom integer number for identifying the location, which you can use with a database
    function savedata(locationlat,locationlon,locationid)
    'set t 1'
    'q time'
    _inittime = subwrd(result, 3)
    day = substr(_inittime, 4, 9)
    tm = substr(_inittime, 1, 2)

    * Set time
    'set lat ' locationlat
    'set lon ' locationlon

    outfile = 'wrf_timeseries.txt'

    'q dims'

    * start tau
    * we start at t=2 (t+1) because of the precipitation fields
    p = 2

    'set gxout stat'

    'set z 1'

    * loop through taus to t+72 (t=73)
    while ( p <= 73)
       'set t 'p''
     
       'd tmp2m-273.15'
       regel = sublin(result,9)
       res_t2m=subwrd(regel,4)

       'd dpt2m-273.15'
       regel = sublin(result,9)
       res_dpt2m=subwrd(regel,4)

       'd rh2m'
       regel = sublin(result,9)
       res_rh2m=subwrd(regel,4)

       'd ugrd10m'
       regel = sublin(result,9)
       res_windu=subwrd(regel,4)

       'd vgrd10m'
       regel = sublin(result,9)
       res_windv=subwrd(regel,4)

       'd prmslmsl/100'
       regel = sublin(result,9)
       res_slp=subwrd(regel,4)

       'd tmpprs(lev=850)-273.15'
       regel = sublin(result,9)
       res_t850=subwrd(regel,4)

       'd rhprs(lev=850)'
       regel = sublin(result,9)
       res_rh850=subwrd(regel,4)

       'd tmpprs(lev=750)-273.15'
       regel = sublin(result,9)
       res_t700=subwrd(regel,4)

       'd hgtprs(lev=700)'
       regel = sublin(result,9)
       res_hgt700=subwrd(regel,4)

       'd hgtprs(lev=1000)'
       regel = sublin(result,9)
       res_hgt1000=subwrd(regel,4)

       'd DSWRFsfc'
       regel = sublin(result,9)
       res_dswrf=subwrd(regel,4)

       'd apcpsfc'
       regel = sublin(result,9)
       res_apcp=subwrd(regel,4)

       'd VISsfc'
       regel = sublin(result,9)
       res_vissfc=subwrd(regel,4)

       'd GUST10m'
       regel = sublin(result,9)
       res_gustsfc=subwrd(regel,4)

       'd TCDCclm'
       regel = sublin(result,9)
       res_tcdc=subwrd(regel,4)
       code=write(''outfile,day''tm';'locationid';'p';'res_t2m';'res_dpt2m';'res_rh2m';'res_windu';'res_windv';'res_slp';'res_t850';'res_rh850';'res_t700';'res_hgt700';'res_hgt1000';'res_dswrf';'res_apcp';'res_tcdc';'res_vissfc';'res_gustsfc'',append)
       
       p = p + 1
    endwhile

    return rc

Practically the same values ​​are extracted by using this other script you created Cory

viewtopic.php?f=6&t=299

Code: Select all

    #!/bin/tcsh
    cd /usr1/wrfems/runs/[domain name]/emsprd/grads
    wgrib2 *.grb2 -match ":TMP:2 m above ground" -rpn "273.15:-:9:*:5:/:32:+" -colon , -vt -print 2MTEMP -lon -98.470468 29.533113 > out.txt
    sed -i 's/[^,]*,//' out.txt
    sed -i 's/lon=261.506072,//' out.txt
    sed -i 's/lat=29.546945,//' out.txt
    sed -i 's/val=//g' out.txt
    sed -i 's/vt=//g' out.txt

They always come out strange data, and in many cases such as yesterday ARW is that NMM (extracted data) gave 0 millimeters of rain per hour, in fact I noticed that snow was reported in the plains, when they were 15 degrees. The plot chart with grads instead is correct

It will be a bug in the WRF EMS 3.4?
Dears,

I use the script for output in text. Can i have values without demical digits? I use "dignum" from grads but it does not work.

For example in temperature i have value 23.23456 and i want 23 without demical digits.

Thank you for your time.

Antonix
Posts: 260
Joined: Fri Oct 16, 2009 8:53 am

Re: strange values ​​extracted with grads

Post by Antonix » Sun Mar 16, 2014 4:49 pm

you need to read each value with a more complete and consistent technique.
we have already discussed something like that long ago.
I am attaching the technique, rapid and correct, to read a numeric value in grads


'd val'

val1 = sublin(result,1)
val11 = subwrd(val1,4)
valok = substr(val11,1,4)

try and change the last value (4) according to your requirements

Post Reply